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Phase Separation in Polyurethanes - A Deuterium NMR Study

J. J. Dumais
L. W. Jelinski*

AT&T Bell Laboratories
Murray Hill, New Jersey 07974

L M. Leung
1. Gancarz
A. Galambos
J. T. Koberstein

Princeton University
Department of Chemical Engineering
Princeton, New Jersey 08544

Although numerous models have been set forth concerning the morphological

microdomain structure for polyurethanes,' there is at present no consensus in this matter.
Bonart er al.,.>™* on the basis of wide angle x-ray scattering (WAXS) and small angle x-
r: scattering (SAXS) experiments, have proposed hard segment packing models in which
the hard segments assume fully extended configurations within lamellar or sheetlike
domains. This model is represented schematically in Figure 1(a). Subsequent WAXS

studies by Blackwell er al.® supported this model.

However, recent results by Van Bogart er al’ and Koberstein and Stein® are
inconsistent with an extended sequence model. Using SAXS, both groups of investigators
find that the hard segment chains must be present in either coiled or perhaps folded

configurations. Koberstein and Stein developed a new model based on these results.® In

this model, the hard segment domain thickness is governed predominantly by the shortest
hard segment sequence length that is insoluble in the soft segment phase. Sequences longer ~.‘..q
a
than this critical length adopt coiled configurations to reenter the hard segment domain and \1
fill space efficiently. Further detailed SAXS experiments on a series of polyurethanes of 'E'-i:j:I:
varying hard segment content support this model.! The Koberstein-Stein model is ‘—j
represented schematically in Figure 1(b). I?j}:j
oy
4
3
e e e e e e s T AT A A AR AT T I..
LRI SRS MR AT NG R N S A S AR S U AU, S L L YO A S




In this Note we present data that further define the nature of phase separation and
hard-segment phase mixing in polyurethanes. In particular, our results address the
following questions: (1) What fraction of the hard segment has motional characteristics
identical to the pure hard segment material? (2) How does this fraction change as a
function of the weight per cent of bard component? And (3) How do the deuterium NMR

data compare with the results of SAXS?

We have shown previously that solid state deuterium NMR spectroscopy’!2 is an
exceptionally powerful tool for addressing the molecular details of phase separation in
segmented copolyesters.!*!4 Deuterium NMR discriminates on the basis of molecular
motion between those hard segments that are identical to the pure hard segment material
and those that are *“dissolved” in the soft segment pbase. Here we apply solid state
quadrupole echo deuterium NMR spectroscopy to the specifically labeled polyurethanes
containing 100, 70, 60, and 50 weight per cent hard segment. The polymers were prepared

15,16

in solution by standard techniques and contain bard and soft blocks represented

schematically as follows:
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Because the polymers are labeled specifically at the butanediol moiety of the hard segment,
the deuterium NMR spectra reflect the motional environment of this group only, and do
not contain contributions from the diphenylmethane diisocyanate (MDI) or the soft

segment polyol residues.

The deuterium NMR spectra'® for these four samples are shown in Figure 2. The
middle column (Figure 2(d-f)) shows the spectrum obtained at 22 *C of the all-bard
segment material at different vertical scales. This spectrum, although ca. 120 kHz in
breadth, is clearly not that of a Pake doublet.? Instead, it is reminiscent of the spectra
observed for similarly labeled poly(butylene terephthalate), in whick gauche-trans
conformational jumps occur at an intermediate rate on the NMR time scale.?® Spin lattice

relaxation experiments show that the T, of this component is ca. 20 ms. Experiments
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' performed with very long recycle delays indicate that more than 95% of the sample
contributes signal intensity to this spectrum. Temperature-dependen: experiments are
{-
= underway to further define the exact details of the molecular motion of the butanediol
- group in this material.

The spectra shown in Figure 2(a-c) correspond to the polyurethane samples containing
n 70. 60, and 50 wt% hard segments, respectively. In addition to the broad, 120 kHz

pattern, these spectra also show a sharp line. That the spectra shown in Figure 2(a-c) are
composed of two components can be shown from inversion-recovery spectra, in which the
broad and the sharp components are observed to invert at different delay times. (Detailed
solid and solution state relaxation experiments are underway and will be reported later.)
The broad component is attributed to those hard segments that reflect molecular motion
which is identical to that of the all-hard segment ms.erial. These hard segments would
constitute the core of the hard segment-rich microdomains. The sharp component indicates
the occurence of molecular motions that are nearly isotropic in natsre and may be
associated with hard segments residing in a more mobile environment. Such increased

mobility would be expected for hard segment sequences that are short enoegh to dissolve in

the soft segment-rich microdomains but may also be found for hard segmests that reside in

the diffuse boundary region between the hard and soft segment microdomais.

The difference spectra shown in Figure 2(g-i) were obtained by subtrazting the spectra ' Z:::ZEE‘

in Figure 2(d-f) from those in Figure 2(a-c). It is interesting to note that the linewidths of --1?

these sharp components are identical; i.c., they are not a function of tre hard segment \~
;'.;.:: content of the polymer. The fraction of sharp component can be estimated by appropriate
F.» integration of these spectra.2® These fractions are listed in Table I, and canbe compared to ""'

SAXS estimates?’ of dissolved hard segment content. i
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l The SAXS estimates are determined by assuming that all hard segment sequences of
length equal to or less than a critical length, N,, are dissolved in the soft segment phase.
The critical segment length is determined from the experimental value of the hard segment
] domain thickness Tp¢ (see Table I). For the samples examined this length is equivalent to
a hard segment containing approximately three MDI and two butanediol residues (i.c.

N, = 3). The weight fraction of butanediol residues that are dissolved in the soft segment

; phase, wp, is then given by
N,
E SiGi=1)

) “2 = TN -
where f, is the number fraction of sequences containing (i—1) butanediol residues
.". calculated from Peebles’ distribution function®', and IT,, is the number average of MDI .__.+
_.. residues per hard segment sequence. The values of w, calculated in this fashion (Table 1) :—’—:

are much smaller than the weight fraction of isotropic component estimated from the :_‘;
I NMR measurements. :
The weight fraction of butanediol residues residing in the interfacial gradient, w;, may ;
also be determined from the SAXS results. If E is the width of a linear diffuse boundary ~’
’ gradient between microdomains,'?’ it is easily shown that &, = (E/Tjs) (1—wp). Values ~
, for this quantity as well as for the weight percent of total dissolved and interfacial hard ‘
- segment are presented in Table 1. The total weight fractions of dissolved and interfacial :‘.':'.A.','.i'i
. hard segment estimated by the SAXS analyses are in good agreement with the NMR Hﬂi

weight percents of isotropic component except for the sample containing SO0 wt% hard ."’5
-. segments, for which the NMR value is much higher. This discrepancy may arise from .._'_j
. IAAS
;:.Z; differences in the synthesis and molding procedures adopted for the NMR and SAXS '.:.',;i:'.;‘
E samples.'32” SAXS experiments on the labeled NMR samples are currently in progress. It -‘:1
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. is apparent that hard segments residing in both the soft segment phase and within the

interfacial gradient contribute to the sharp component observed in the NMR spectra. V'w Wit

= Yemalle Proveds Sagport e Wa \‘-.-,;u?\~\”\; R T TS X3 TV VN 05 O I W
. The solid state deuterium NMR results show that this interfacial area has very nearly

isotropic motion on a 107 s™! timescale. Such rapid, nearly isotropic motions are observed
in flexible polymers such cis-polybutadiene and poly(dimethy! siloxanes). The rapid, nearly
: isotropic motions observed for these butanediol residues suggest that there are few long-

lived interurethane hydrogen bonding interactions in this interfacial area.

It is appropriate to compare the quadrupole echo deuterium NMR results reported here
> ' with other NMR results.3"3® Although they have not been performed on identical

polyurethanes, the overall conclusions are relevant to the system at hand.

Using broadline proton NMR, Assink®>** finds two components. One decays rapidly
and is attributed to the MDI hard segments, whereas the other decays more slowly and is

assigned to the polyester soft segments. With proton spin diffusion as an experimental

‘ probe, Assink and Wilkes’35 evaluated phase mixing in a series of MDI-polyester
polyurethanes. Their data require the presence of both short and long range degrees of
:: mixing. The short range mixing is attributed to distances involving several molecular
b“_ diameters, whereas the long range mixing is attributed to chain entanglement effects. .._.
Their results point to a fair fraction of interfacial material.
.
} The deuterium NMR experiments reported in this work substantiate and expand on the | i
E’ results of Assink and Wilkes. Because only the hard segment is labeled in the present case, -’—:
all ambiquities concerning the source of the signal (i.c, bard or soft segments) are “3
At
removed. Furthermore, deuterium NMR spectra are dominated by quadrupolar relaxation, r__j
and spin diffusion is not a factor in interpreting the data. Most importantly, the material ,*
e
RS
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comprising the interfacial area can now be directly examined and quantified by NMR

measurements.

The results reported in this Communication show that the solid state deuterium NMR

experiment holds much promise for providing rich and detailed information concerning

microphase separation in polyurethanes and other phase-separated polymers. Multiple
; experiments along the lines described here are in progress and will be described at a later

date.
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Figure 1.

Figure 2:

FIGURE CAPTIONS

Schematic representation of (a) the extended hard segment configuration
model, and (b) the Koberstein—Stein model.® The bars represent the MDI

units.

Solid state quadrupole echo deuterium NMR spectra of hard segment labeled
polyurethanes obtained at 22°C and 55.26 MHz. Spectrum (a) 70, (b) 60, and
(c) 50 wt% hard segment. Spectra (d-f) are of the all-hard segment material
reported at different vertical gains. Spectra (g-i) were obtained by subtracting
an appropriate amount of the symmetrized spectra in the center column from

those in the left column. All spectra were obtained with a 2s recycle delay.
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